Exploring Asian North American (ANA) English: A YouTube Corpus-based Approach

Lauretta S. P. Cheng & Mathew A. Kramer LSA 2022 January 6, 2022

Perception: "Sounding Asian"

Some listeners can correctly identify some local "Asian American" speakers at rates above chance

(Hanna, 1997; Newman & Wu, 2011; Wong & Babel, 2017; Cheng & Cho, 2021)

Figure 2. Histogram showing each judge group's score on the Asian American identification test by percentage. (For Asian American judges, n = 30, $\mu = 67\%$, $\sigma = 11\%$. For white judges, n = 30, $\mu = 63\%$, $\sigma = 10\%$.)

Bauman (2016):

- Members of Asian American-interest sorority in New Jersey (mid-Atlantic region)
- Some phonetic features interpreted to index local panethnic Asian identity:
 - o Backed /oʊ/
 - Monophthongal /oʊ/
 - Lower vowel durational variability ("syllable-timed rhythm")

Production: ANA Ethnolinguistic Markers

- No consistent differences found across ethnic/racial groups (Newman & Wu, 2011)
 - E.g., Chinese and Korean American women did not differ from other ethnic groups in vocalic durational variability

- Variation across specific ANA ethnic groups (Cheng et al., 2016)
 - E.g., In California, Korean Americans retracted /ου/ while Chinese Americans fronted /ου/

Research Objective

- Exploratory study to extend previous studies of ANA ethnolinguistic variation
- Clustering analysis on several ANAassociated phonetic features from a sample Asian American-identified YouTubers

Predictions

Feature	Prediction	
/oʊ/-backing	Fronted (higher F2) White Americans Americans	Asian Americans Korean Americans
/oʊ/-monoph- thongization	Diphthongal (more formant movement)	Asian Americans Monophthongal (less formant movement)
Prosodic rhythm	<pre>'Stress-timed' (more variable vowel durations)</pre> White Korean Americans Americans	Chinese Americans Asian Americans (less variable vowel durations)

Bauman (2016); Hall-Lew (2009); Cheng et al. (2016); Jeon (2017); A. Cheng (2020); D'Onofrio & Van Hofswegen (2020); Newman & Wu (2011); Zipp & Staicov (2016)

17 speakers (14 ANA, 3 non-ANA)

- All grew up in California, and present as women
- Identified mainly via Asian American topic videos or general Q&A/Get to Know Me tag videos
- Where possible, speech samples came from videos on Asian American topics

Code	Ethnicity	n
chi	Chinese American	4
kor	Korean American	5
eas	Other East Asian	2
viet	Vietnamese American	3
non	Non-Asian American	3

Methods: Data collection and processing

Feature	Measure
/oʊ/-backing	Norm. F2 difference (nBacking) : difference in /oʊ/ F2 from mean /i/ F2 (higher = more back)
/oʊ/-monoph- thongization	Norm. Euclidean distance (nED) : ED of F1+F2 values at ~25% and ~75%, divided by token duration (in seconds) (lower = more monophthongal)
Prosodic rhythm	Norm. pairwise variability index (nPVI): Average (median) duration difference between pairs of consecutive vowels, divided by mean pair duration (lower = less dur. variability)

9

Results: Score Distributions by Ethnicity

Results: Hierarchical Clustering Analysis

Results: Hierarchical Clustering Analysis

Results: Hierarchical Clustering Analysis

 All 3 non-ANA speakers (in A & D) have average scores, and relatively fronted /ov/

 All speakers with extreme scores are ANAs, and have relatively backed /ou/

Future Steps

- Examine more speakers and features
- Gather perceptual judgment/ ethnic identification data

References

- Barreda, S. (2021). Fast Track: Fast (nearly) automatic formant-tracking using Praat. Linguistics Vanguard, 7(1). <u>https://doi.org/10.1515/lingvan-2020-0051</u>
- Barreda, S., & Nearey, T. M. (2018). A regression approach to vowel normalization for missing and unbalanced data. The Journal of the Acoustical Society of America, 144(1), 500–520. https://doi.org/10.1121/1.5047742
- Cheng, A. (2020). 'School' Versus 'Home': California-based Korean Americans' Context-dependent Production of /u/ and /oU/. University of Pennsylvania Working Papers in Linguistics, 26(1).
- Cheng, A., & Cho, S. (2021). The Effect of Ethnicity on Identification of Korean American Speech. Languages, 6(4), 186. <u>https://doi.org/10.3390/languages6040186</u>
- Cheng, A., Faytak, M., & Cychosz, M. (2016). Language, race, and vowel space: Contemporary Californian English. In E. Clem, V. Dawson, A. Shen, & A. Horan (Eds.), Proceedings of the Forty-Second Annual Meeting of the Berkeley Linguistics Society (pp. 63–78).
- Cheng, L. S. P. & Kramer, M. A. (2021, October) Introducing LingTube: An open-source toolkit for linguistic analysis of YouTube data. Poster presented at New Ways of Analyzing Variation (NWAV) 49 (virtual).
- D'Onofrio, A., & van Hofwegen, J. (2020). Nisei Style: Vowel Dynamism in a Second-Generation Japanese American Community. The Publication of the American Dialect Society, 105(1), 79–94. <u>https://doi.org/10.1215/00031283-8820631</u>

- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (Eighth edition). Cengage.
- Hall-Lew, L. (2009). Ethnicity and phonetic variation in a San Francisco neighborhood [Ph.D. Dissertation, Stanford University].
- Hanna, D. B. (1997). Do I Sound "Asian" to You?: Linguistic Markers of Asian American Identity. *UPenn Working Papers in Linguistics*, *4*(2), 15.
- Newman, M., & Wu, A. (2011). "Do You Sound Asian When You Speak English?" Racial Identification and Voice in Chinese and Korean Americans' English. *American Speech*, *86*(2), 152–178.
- McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., & Sonderegger, M. (2017). Montreal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi. INTERSPEECH. https://doi.org/10.21437/interspeech.2017-1386
- Wong, P., & Babel, M. (2017). Perceptual identification of talker ethnicity in Vancouver English. *Journal of Sociolinguistics*, 21(5), 603–628.
- Zipp, L., & Staicov, A. (2016). English in San Francisco Chinatown: Indexing identity with speech rhythm? World Englishes, 205–228.